Parameters
ModelParameters(prior_dict)
Initialize the calibration model parameters. :param kernel_config: A dictionary containing the kernel configuration.
Source code in .tox/docs/lib/python3.12/site-packages/kohgpjax/parameters.py
constrain_and_unflatten_sample(samples_flat)
Transform samples to the constrained space and unflatten them to the original prior tree structure. Args: samples_flat: A flat array of samples. Returns: A tree of samples in the constrained space with the same structure as the priors.
Source code in .tox/docs/lib/python3.12/site-packages/kohgpjax/parameters.py
constrain_sample(samples_flat)
Transform samples to the constrained space. Args: samples_flat: A flat JAX array of samples. Returns: A list of samples transformed to the constrained space.
Source code in .tox/docs/lib/python3.12/site-packages/kohgpjax/parameters.py
get_log_prior_func()
Compute the joint log prior probability.
Returns:
-
Callable[[ParameterValueList], Scalar]
–A function that computes the joint log prior probability.
Source code in .tox/docs/lib/python3.12/site-packages/kohgpjax/parameters.py
unflatten_sample(samples_flat)
Unflatten the samples to the original prior tree structure. Args: samples_flat: A flat array of samples. Returns: A tree of samples with the same structure as the priors.
Source code in .tox/docs/lib/python3.12/site-packages/kohgpjax/parameters.py
ParameterPrior(distribution, name=None)
Distribution on the constrained parameter. Args: distribution: A numpyro Distribution object representing the prior distribution. name: Optional name for the prior.
Source code in .tox/docs/lib/python3.12/site-packages/kohgpjax/parameters.py
forward(y)
Transform the input to the constrained space. Args: y: The unconstrained input value.
inverse(x)
Transform the input to the unconstrained space. Args: x: The constrained input value.
log_prob(y)
Compute the log probability density function (PDF) of the distribution. Args: y: The unconstrained input value.
Source code in .tox/docs/lib/python3.12/site-packages/kohgpjax/parameters.py
prob(y)
Compute the probability density function (PDF) of the distribution. Args: y: The unconstrained input value.